

LA-UR-15-21299

Approved for public release; distribution is unlimited.

Title: Using LGI experiments to achieve better understanding of pedestal-edge

coupling in NSTX-U

Author(s): Wang, Zhehui

Intended for: NSTX-U research forum discussions, Febuary, 2015

Issued: 2015-02-23

Using LGI experiments

To achieve better understanding of pedestal-edge coupling in NSTX-U

Zhehui (Jeff) Wang

Los Alamos National Laboratory

NSTX collaboration meeting, PPPL (Feb. 22-27, 2015)

UNCLASSIFIED

Abstract

Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

Outline

Intro & previous work

- Dust transport studies
- hypervelocity dust injection for fusion energy
- In-situ dust cloud imaging (micron & larger grains)

Opportunities with LGI experiments

- Imaging + Injector + Materials (dust/granules, wall)
- The gap between observations & understanding
- Better (high spatial resolution, non-invasive) characterization of edge/pedestal plasmas

Dust as 'surprises' in many fields → Interstellar dust

Robert J. Trumpler (1930)

Photometric distance (parsec)

$$\frac{1}{1}$$
 parsec = 2.06 × 10⁵ AU = 3.26 ly

Reddening and Extinction

Rayleigh scattering

$$I_{scat.} \propto \lambda^{-4}$$

UNCLASSIFIED

Semiconductor fabrication

Moore's Law

G. S. Selwyn, et al. JVST (1989)

In-situ production of dust by processing plasma observed and analyzed.

a solution

Z. Wang Slide 5

UNCLASSIFIED

Dust in magnetic fusion: "seems all bad"

Winter, PoP (2000)

Roquemore et al. (2006)

- Fire hazard, radioactive material transport
- Radiative cooling of fusion reactor

0110E000111E0

Hypervelocity dust injection

The electrostatic approach

UNCLASSIFIED

The coaxial plasma accelerator

Dust reservoir

Hypervelocity dust injection and in-situ measurement

Z. Wang et al, PoP 14 (2007) 103701

Studying of plasma flows

rotation direction is determined by J ×B torque

UNCLASSIFIED

Using dust for flow measurements

The falling time (0.1-0.2 s) >>

 $au_{pl.}$ (~ 10 ms)

Dust were pre-dropped before the plasma shot/discharge,

The dust grains are ~ at rest relative to the rapid moving plasma.

Dust trajectories recorded

UNCLASSIFIED

Dust motion is dominated by 'impact' drag

$$\mathbf{F}_{pf} = 2\pi r_d^2 k_B T_i n_i \xi \mathbf{w}$$

other forces are small

Dust can become a new technique for plasma flow

UNCLASSIFIED

R&D opportunities

Granule/dust –plasma interactions

- Fundamental physics of granule/dust high-temperature plasma interactions
- Safety, hazards (code validation)
- Edge/pedestal plasmas (ELMs pacing, disruption mitigation)

Pedestal-edge coupling

- High spatial-temporal measurement
- First wall (material) development

Injector technology + micro/nano-fabrication

- Tailored material properties
- Tailored injection conditions

Imaging technology

- Real time particle tracking
- High spatial and temporal resolutions

Transport varies significantly with models

Injector technology roadmap

Z. Wang et al, AIP Conf. Proc. 1041 (2008) 135

High-speed tracking of granular matter (1)

UNCLASSIFIED

High-speed tracking of granular matter (2)

UNCLASSIFIED

Tailored material properties

Porous chondrite interplanetary dust particle. Courtesy of E.K. Jessberger, Institut für Planetologie, Münster, Germany, and Don Brownlee, University of Washington, Seattle.

SEM image of Y2O3 microspheres for radiotherapy

diamond

A computer-generated nanoparticle of 1 nm diameter (Si29H24). Top left: platinum.

Si (orange); H (white) Top right: palladium.

Bottom: Au nanoparticles.

protein microsphere

Size (µm)

0.001

0.001

1 100 ~ 500

UNCLASSIFIED

Acknowledgement

```
(Experimental team)
```

Paul Beinke (UGS/GS, UNM),

S. K. Combs, C. Foust, L. R. Baylor,

M. Lyttle, D. A. Rasmussen (ORNL)

Leonid Dorf (postdoc),

Michael Martin (GS, Texas A&M),

Edward Mignardot,

Richard Santillo (UGS, NJIT),

Jiahe Si (Ph. D, RPI),

Catalin Ticos (postdoc),

Glen Wurden

ZHW LAUR-07-2982 #21